Monday	7 July	
		INAUGURATION ICCP2008
8:00-8:15		Welcoming remarks: Z. Levin, L. Barrie, G. Raga
8:15-8:45		Keynote Presentation: Aerosol impacts on deep convective clouds by William Cotton

8:45-10:00		Plenary Oral Session 1 : BASIC CLOUD PHYSICS
		Chairperson: TBD
8:45-9:00	1.1	Invited: Roland List
		New comprehensive equations for graupel and hailstone growth
9:00-9:15	1.2	Tsuneya Takahashi, Norihiko Fukuta, Takayuki Hashimoto
		Vertical supercooled cloud tunnel studies on the growth of dendritic snow crystals
9:15-9:30	1.3	Gabor Vali
		Surface sources of ice particles in mountain clouds
9:30-9:45	1.4	Guillermo Montero-Martínez, Raymond A. Shaw, Alexander B. Kostinski, Fernando García-García
		Fall speed measurements of raindrops at the ground during precipitation events in Mexico.
9:45-10:00	1.5	Szymon P. Malinowski, Piotr Korczyk, Tomasz A. Kowalewski
		Turbulent mixing of cloud with the environment: two-phase evaporating flow as seen by Particle Imaging Velocimetry.

10:00-10:30 Coffee Break

10:30-12:15		Plenary Oral Session 1 : BASIC CLOUD PHYSICS (Continued)
		Chairperson: TBD
10:30-10:45	1.6	Christopher R. Ruehl, Patrick Y. Chuang, Athanasios Nenes
		Distinct cloud droplet nucleation kinetics observed above the marine boundary layer
10:45-11:00	1.7	Heike Eichler, André Ehrlich, Manfred Wendisch, Bernhard Mayer
		Influence of Ice Crystal Shape on Retrieval of Cirrus Optical Thickness and Effective Radius
11:00-11:15	1.8	Jennifer M. Comstock, Ruei-Fong Lin, David O. Starr
		Understanding Ice Supersaturation, Particle Growth, and Number Concentration in Cirrus Clouds
11:15-11:30	1.9	Lian-Ping Wang, Bogdan Rosa, Wojciech W. Grabowski
		Turbulent collision-coalescence of cloud droplets and its impact on warm rain initiation
11:30-11:45	1. 10	Steven K. Krueger, Jaekyoon Oh, Alan R. Kerstein
11.50 11.45		Enhancement of coalescence due to droplet inertia in turbulent clouds
11:45-12:00	1.11	Jan Schlottke, Winfried Straub, Klaus D. Beheng, Bernhard Weigand
		Numerical investigation of collision-induced breakup of raindrops. part I: Methodology as well as dependencies on collision energy and excentricity
12:00-12:15	1. 12	Hugh C. Morrison, Wojciech W. Grabowski
12.00-12.13		A novel approach for representing ice microphysics in models
12:15-13:15		Buffet Lunch

P1.1 Alex b. Kostinski, Will Cantrell

Entropic Aspects of Supercooled Droplet Freezing

P1.2 Alexander Avramov, Jerry Y. Harrington

The influence of crystal habit on simulations of mixed-phase Arctic stratus clouds

P1.3 Alexei Korolev, George Isaac

The effect of spatial averaging on the relative humidity and phase composition of clouds

P1 4 Axel Seifert

On the parameterization of evaporation of raindrops below cloud base

P1.5 Boris Y. Grits, Mark Pinsky, Aleksander Khain

Calculation of collision rate between small non-spherical particles in a turbulent flow

P1.6 Charmaine N. Franklin

Warm rain microphysics parameterisations that include the effect of turbulence

P1.7 Christopher A. Jeffery

Droplet radius vs subsaturation evaporative timescales: Which timescale has a greater influence on droplet spectra?

P1.8 Daniel Abreu, Roland List

Motion patterns of gyrating spheroids for various degrees of spin modulation

P1.9 Dirk Hoffmann, Christian Weller, Thomas Schaefer, Hartmut Herrmann

Laboratory studies on cloud chemistry processes

P1.10 Frédéric Burnet, Jean-Louis Brenguier

Entrainment and Mixing in Warm Convective Clouds: Effects on Droplet Spectra and on the Onset of Precipitation

${\bf P1.11} \quad \textbf{Graham Feingold, Patrick Chuang, Jennifer Small, Hongli Jiang, Haflidi. Jonsson, Steven Krueger}$

Assessment of Aerosol and Entrainment-Mixing Processes on Drop Size distributions in Warm Cumulus

P1.12 Jacob P. Fugal, Hansen Nordsiek, Jiang Lu, Ewe Wei Saw, Raymond. Shaw

Lagrangian Observations of Inertial, Settling Cloud Particles in Turbulent Flow

P1.13 Jason A. Milbrandt, Ron McTaggart-Cowan

A Semi-Double-Moment Bulk Scheme

P1.14 Jerry Y. Harrington, Lindsay Sheridan, Dennis Lamb

Parameterization of the deposition coefficient for bulk microphysical models: Implications for simulated cirrus.

D1 15 Joanna Slawinska, Hanna Pawlowska, Hugh Morrison, Wojciech W. Grabowski

Effects of homogeneous versus inhomogeneous mixing on trade-wind convection as simulated by a two-moment bulk microphysics scheme

P1.16 Karoline Diehl, Nadine von Blohn, Stephan Borrmann, Subir K. Mitra

Laboratory experiments on growth rates, regimes, and collection kernels during riming

P1.17 Lance R. Collins, Sathyanarayana Ayyalasomayajula, Raymond A. Shaw, Zellman Warhaft

Experimental measurements and numerical modeling of inertial droplets in high-Reynolds-number turbulence

P1.18 Lester Alfonso, Graciela B. Raga, Darrel Baumgardner

A stochastic model for the collection growth of ice particles in mixed-phase clouds

P1.19 Lester Alfonso, Graciela B. Raga, Darrel Baumgardner

Monte Carlo simulations of two-component drop growth by stochastic coalescence

P1.20 Lian-Ping Wang, Bogdan Rosa, Hui Gao, Wojciech W. Grabowski

Recent advances in modeling aerodynamic interaction and collision efficiency of cloud droplets

P1.21 Mahlon P. Rambukkange, Johannes Verlinde, Pavlos Kollias, Edward Luke

A new mode of ice nucleation?

P1.22 Miklós Szakáll, Karoline Diehl, Subir K. Mitra, Stephan Borrmann

Shape oscillations of freely falling raindrops

P1.23 Mladjen Curic, Dejan Janc, Vladan Vuckovic

The Role of Truncated Spectrum in Accreatian Rate Calculations

P1.24 Nadine von Blohn, Karoline Diehl, Subir K. Mitra, Stephan Borrmann

Retention of trace gases during riming of ice particles and snow flakes

P1.25 Norihiko Fukuta

Diffusion-Kinetic Droplet Growth Theory With the Moving Surface-Boundary Effect (DKMB) for Cloud Study

P1.26 Roland List, Daniel Abreu

Shape evolution of growing hailstones as function of gyration parameters

P1.27 Roland List, Daniel Abreu

Drop shedding from growing hailstones, processes and predictions

P1.28 Sandra Turner, Jean-Louis Brenguier, Christine Lac

Parameterization of subgrid scale cloud variability in mesoscale models

P1.29 Sarah Berthet, Maud Leriche, Jean-Pierre Pinty

Scavenging of aerosol by rain in a cloud resolving model

P1.30 Stefanie Wassermann, Michael Kunz, Christoph Kottmeier

Mechanisms of Precipitation over complex terrain

P1.31 Steven K. Krueger

Fine-scale modeling of entrainment and mixing of cloudy and clear air

P1.32 Vladimir Smorodin, Norihiko Fukuta

The Fuchs boundary sphere method in the throry of droplet growth

P1.33 Xing-Can Jia, Sheng-Jie Niu

Analyses of Raindrop Size Distributions from Stratiform and Convective Clouds over Guyuan, China

P1.34 Yasushi Fujiyoshi, Ikuyo Yamamura, Nobuhiro Nagumo, Katsuhiro Nakagawa, Ken-ichro Muramoto, Toyoshi Shimomai

The maximum size of raindrops -Can it be a proxy of precipitation climatology?

13:15-14:45 Poster Session P2: STRATUS CLOUDS Chairperson: TBD

P2.1 Andreas Mühlbauer, Ulrike Lohmann

Modeling warm-phase orographic clouds and precipitation at the Jungfraujoch in Switzerland

P2.2 Anping Sun, Guoguang Zheng, Guoqing Zhang

Preliminary Investigations of Orographic Cloud Characteristics over the Southern Slope Area of Qilian Mountain

P2.3 Chang K. Kim, Seong S. Yum

Understanding of the formation mechanism of cold water fogs off the west coast of the Korean Peninsula

P2.4 David Painemal, Paquita Zuidema

Cloud droplet number concentration variability over the Southeast Pacific Stratocumulus region

P2.5 Dione L. Rossiter, Jennifer D. Small, Chuang Y. Chuang

Observations of Size-resolved Drizzle Rates in Marine Stratocumulus

P2.6 Ewan J. O'Connor

Using Doppler lidar and radar to evaluate the representation of drizzle in models

P2.7 Faisal S. Boudala, George A. Isaac

Parameterization of ice particle spectra in extra tropical clouds: Normalization approach

P2.8 Faisal S. Boudala, George A. Isaac, Andre Tremblay

A new bulk ice microphysical scheme based on in-situ observations

P2.9 Frederick Chosson

Aerosol Indirect effects in ship tracks: Numerical Simulations

P2.10 Hermann E. Gerber, Steven K. Krueger

POST - Physics Of Stratocumulus Top

P2.11 Jiefan Yang, Hengchi Lei

Study on the Stratiform Cloud Numerical Model and Actual Observation

P2.12 Jing Sun, Pengyun Wang

Numerical study on microphysical processes of two different snowfall cases in North China

P2.13 Kenji Suzuki, Shunsuke Shigeto, Takumi Koga, Kazue Morinaga, Kunio Yoneyama

Microphysical structures of stratiform clouds associated with the MJO observed during MISMO project

P2.14 Keun Y. Song, Seong S. Yum

LES model simulations of CCN impacts on stratocumulus microphysics and dynamics

P2.15 Lei Meng, Sheng-Jie Niu, Ning Luo, Ji-Fen Wen

Analysis of the Evolution of Microphysical Characteristics of fog droplets in rime and glaze

P2.16 Ling-Ling Wang, Sheng-Jie Niu, Chun-Song Lu, Jie Xu, Ning Luo, Jun-Wei Yu

An analysis of characteristic fog-droplet size distributions on Guizhou Yunwu Mountain

P2.17 Marcin J. Kurowski, Krzysztof E. Haman, Wojciech W. Grabowski, Szymon P. Malinowski

Observations and numerical modeling of entrainment and mixing near the top of marine stratocumulus.

P2.18 Natalia A. Bezrukova

Climatology of the glaze and rime on the Russian Arctic coast stations

P2.19 P.M.M. Soares, P.M.A. Miranda, A. Catarino

Momentum fluxes in the cloudy boundary layer: LES diagnostics

P2.20 Raymond A. Shaw, Holger Siebert

Correlations of Turbulence and Droplet Size from Simultaneous, High-Resolution Measurements in Stratocumulus Clouds

P2.21 Sabine Goeke, Leila Konkola

Interpretation of polarization radar measurements of the melting layer

P2.22 Sheng-Jie Niu, Jie Xu, Chun-Song Lu, Jing-Jing Lu, Wei-Wei Wang, Zi-Hua Li

Analysis of the microphysical structures of ultra heavy fog around Nanjing in the 2006 winter

P2.23 Simon P. de Szoeke, Chris W. Fairall

NOAA ship observations of southeast tropical Pacific stratus clouds

P2.24 Svitlana V. Krakovska

Tests of bulk cloud microphysics parameterizations in the explicit cloud model

P2.25 Takamichi Iguchi, Teruyuki Nakajima, Alexander Khain, Kazuo Saito, Toshihiko Takemura, Hajime Okamoto, Tomoaki Nishizawa

A simulation of radar- and lidar-derived vertical structures of frontal cloud using a bin-type cloud microphysical model

P2.26 Tempei Hashino, Greg J. Tripoli

Evolution of Particle Size Distribution and Ice Crystal Habit

P2.27 Tianyu Chen, Yue Chen

Primary Observation Results of Orographic Clouds on North Slop of Qi-Lian mt.

P2.28 Virendra P. Ghate, Bruce A. Albrecht

Turbulence Structure of Continental Boundary Layer Clouds

P2.29 Weiguo Liu, Qijun Liu

A Numerical Simulation of Orographic Cloud over Qilian Mountains in Summer by ARPS model with Improved ice Microphysical Scheme

P2.30 Xincheng Ma, Qiang Zhang, MengYu Huang, Hongyu Li

Observed Macroscopical and Microphysical Structure of Stratus Clouds in Beijing

P2.31 Yanchao Hong, Feifei Zhou, Zongxiu Liu

The Study on Potential of Artificial Precipitation Enhancement for Stratus Clouds System

P2.32 Yuquan Zhou, Zhijin Hu, Shuhui zhao

Observational Study on Stratiform Cloud Structure and Cloud-seeding Condition of Precipitation Enhancement Based on Observations of TRMN Satellite and Aircraft

P2.33 Zhaoxia Hu, Hengchi Lei, Xueliang Guo, Dezhen Jin, Yanbin 1. Qi, Xiaoqing Zhang

Studies of the Structure of a Stratiform Cloud and the Physical Processes of Precipitation Formation

P2.34 Zhen Zhao, HengChi Lei

A Numerical Simulation of Cloud Physical Structure and Microphysical Processes Associated with Stratiform Precipitation in Northwest China

P2.35 Zlatko Vukovic

The conditions and depth of relative homogenous cloud layer in the stratus clouds

14:45-16:45		Plenary Oral Session 2: STRATUS CLOUDS
		Chairperson: TBD
14:45-15:00	2.1	Invited: Bruce Albrecht Aerosol-Cloud-Drizzle Interactions in Marine Stratocumulus—Nature's Way and Man's Way
15:00-15:15	2.2	Wolfram Wobrock, Jean-François Gayet, Guillaume Mioche, Alfons Schwarzenböck, Andrea. Flossmann Microphysical characteristics of Arctic stratus observed during ASTAR2 - a comparison between observations and detailed microphysical modeling
15:15-15:30	2.3	Holger Siebert, Raymond Shaw The small-scale structure of turbulence in marine stratocumulus
15:30-15:45	2.4	Lee D. Smith, Anthony J. Illingworth Global statistics of the liquid water path and drizzle occurrence in liquid water clouds derived from CloudSat using the attenuation of the ocean return.
15:45-16:00	2.5	Kenneth Sassen As Snow Changes to Rain: Understanding the Vicissitudes of Electromagnetic Scattering Through the Melting Layer (from Above and Below)
16:00-16:15	2.6	Hailong Wang, Graham Feingold, Huiwen Xue Modeling Aerosol Effects on the Formation of Pockets of Open Cells in Marine Stratocumulus Using an Embedded LES in a Mesoscale Model
16:15-16:30	2.7	Tatu Anttila, Veli-Matti Kerminen On the contribution of Aitken mode particles to cloud droplet populations at clean continental areas - a parametric sentivity study
16:30-16:45	2.8	Leehi Magaritz, Mark Pinsky, Alexander Khain Drizzle formation in stratiform clouds: random nature and lucky parcels

19:00-20:00 Welcome Cocktail